마이그레이션

마이그레이션은 당신의 모델에 생긴 변화(필드를 추가했다던가 모델을 삭제했다던가 등등)를 반영하는 Django의 방식입니다. 대체로 자동실행되도록 설계되었지만 언제 마이그레이션을 만들고 언제 실행하고 보통 어떤 문제에 맞닥트리는지는 알아둘 필요가 있습니다.

명렁어

마이그레이션을 실행하고 데이터베이스 스키마를 장고가 다루기 위한 다양한 명렁어들이 있습니다.

  • migrate 은 마이그레이션을 반영하거나 반영하지 않기 위해 사용합니다.
  • :djadmin:`makemigrations`는 모델을 변경한 것에 기반한 새로운 마이그레이션을 만들 때 사용합니다.
  • :djadmin:`sqlmigrate`은 마이그레이션을 위한 SQL 구문을 보기 위해 사용합니다.
  • :djadmin:`showmigrations`는 프로젝트 전체의 마이그레이션과 각각의 상태를 나열하기 위해 사용합니다.

마이그레이션은 당신이 다루고 있는 데이터베이스 스키마를 위한 버전 관리 시스템(VCS)이라고 생각하면 됩니다. ``makemigrations``는 모델에 생긴 변화를-깃의 커밋과 유사하게-개별 마이그레이션 파일에 싸넣는 작업입니다. ``migrate``는 각각의 마이그레이션 파일을 데이터베이스에 적용하는 작업입니다.

각 앱의 마이그레이션 파일들은 해당 앱의 《migrations》 디렉토리 안에 있습니다. 마이그레이션 파일은 앱의 코드베이스에 적용되어 앱의 각 부분에 분배되도록 설계되어 있습니다. 마이그레이션 파일을 개발 기기에서 한 번 만들고 동료들의 기기, 스테이징 기기(개발 서버에서 운영 서버로 넘어가기 전에 운영 서버와 유사한 환경으로 테스트하는 서버) 그리고 최종적으로는 운영 기기에서 같은 마이그레이션 파일을 실행하면 됩니다.

주석

:setting:`MIGRATION_MODULES`의 설정을 변경해서 앱 단위 마이그레이션이 포함된 패키지를 무시할 수도 있다.

마이그레이션은 같은 데이터셋에서 똑같이 작동할 것이고 똑같은 결과물을 만들어낼 것입니다. 즉 같은 상황이라면 개발이나 스테이징에서 봤던 것과 정확하게 똑같은 결과물이 운영 단계에서 나온다는 말입니다.

마치 정확하게 필드를 재구축하는 유일한 방법이 모든 변화를 기록해놓는 것인냥 Django는 모델과 필드에서 생기는 모든 변화에 대해서 마이그레이션을 만들 것입니다. 심지어 데이터베이스에 영향을 못 미치게 하는 옵션을 켜더라도 일단은 만들 것입니다. 나중에 다룰 데이터 마이그레이션에서 이런 옵션도 필요할 것입니다.(예를 들면 커스텀 검사기를 설정해놓았다거나.)

백엔드 지원

스키마 변화를 지원하도록 만들어진(SchemaEditor 1 클래스 문서 참조). 서드파티 백엔드를 포함해서, Django에 포함된 모든 백엔드에서 마이그레이션이 지원됩니다.

하지만 일부 데이터베이스가 스키마 마이그레이션에 있어서 다른 것들보다 더 용이합니다. 특징들은 아래에서 다루겠습니다.

PostgreSQL

PostgreSQL is the most capable of all the databases here in terms of schema support.

The only caveat is that prior to PostgreSQL 11, adding columns with default values causes a full rewrite of the table, for a time proportional to its size. For this reason, it’s recommended you always create new columns with null=True, as this way they will be added immediately.

MySQL

MySQL은 스키마 변환 작업을 할 때 트랜잭션에 대한 지원이 부족합니다. 만약 마이그레이션 적용에 실패하면 재시도하기 위해 수동으로 변경사항을 취소해야 합니다.(즉 이전으로 롤백하는 것이 불가능합니다)

게다가 MySQL도 거의 대부분의 스키마 작업을 할 때 테이블을 완전히 다시 쓰기 때문에 칼럼을 추가하거나 삭제할 때 그 테이블의 레코드 수에 비례해서 시간이 걸립니다. 느린 하드웨어에서는 백만개 행을 처리하는데 1분 이상이 걸릴 수도 있고 수백만 개의 행이 있는 테이블이라면 몇 개의 행을 추가하는데도 10분 넘게 사이트를 먹통으로 만들 수 있습니다.

마지막으로 MySQL은 상대적으로 칼럼, 테이블, 인덱스의 이름 길이나 인덱스가 적용되는 모든 칼럼의 크기가 작습니다. 그래서 다른 백엔드에서 가능한 인덱스가 MySQL에서는 작동하지 않을 수 있습니다.

SQLite

SQLite는 매우 한정된 스키마 변동만 자체적으로 지원해서 Django가 아래 방법으로 스키마 변동을 흉내냅니다.

  • 새 스키마로 새 테이블 만들기
  • 테이블 간의 데이터 복사
  • 기존 테이블 삭제
  • 새 테이블의 이름을 기존 테이블의 이름으로 변경

이 방법은 보통 잘 작동하지만 속도가 느리고 종종 버그가 납니다. 위험과 한계를 정확하게 알지 않는 이상 운영 환경에서 SQLite로 운영하거나 마이그레이션 하는 것을 추천하지 않습니다. Django에서는 개발자들에게 로컬 장비에서 완전한 데이터베이스가 필요하지 않은 간단한 Django 프로젝트를 할 때만 SQLite를 쓰는 것을 허용하도록 지원하고 있습니다.

워크플로우

Django can create migrations for you. Make changes to your models - say, add a field and remove a model - and then run makemigrations:

$ python manage.py makemigrations
Migrations for 'books':
  books/migrations/0003_auto.py:
    - Alter field author on book

Your models will be scanned and compared to the versions currently contained in your migration files, and then a new set of migrations will be written out. Make sure to read the output to see what makemigrations thinks you have changed - it’s not perfect, and for complex changes it might not be detecting what you expect.

Once you have your new migration files, you should apply them to your database to make sure they work as expected:

$ python manage.py migrate
Operations to perform:
  Apply all migrations: books
Running migrations:
  Rendering model states... DONE
  Applying books.0003_auto... OK

Once the migration is applied, commit the migration and the models change to your version control system as a single commit - that way, when other developers (or your production servers) check out the code, they’ll get both the changes to your models and the accompanying migration at the same time.

If you want to give the migration(s) a meaningful name instead of a generated one, you can use the makemigrations --name option:

$ python manage.py makemigrations --name changed_my_model your_app_label

Version control

Because migrations are stored in version control, you’ll occasionally come across situations where you and another developer have both committed a migration to the same app at the same time, resulting in two migrations with the same number.

Don’t worry - the numbers are just there for developers〉 reference, Django just cares that each migration has a different name. Migrations specify which other migrations they depend on - including earlier migrations in the same app - in the file, so it’s possible to detect when there’s two new migrations for the same app that aren’t ordered.

When this happens, Django will prompt you and give you some options. If it thinks it’s safe enough, it will offer to automatically linearize the two migrations for you. If not, you’ll have to go in and modify the migrations yourself - don’t worry, this isn’t difficult, and is explained more in Migration files below.

트랜잭션

On databases that support DDL transactions (SQLite and PostgreSQL), all migration operations will run inside a single transaction by default. In contrast, if a database doesn’t support DDL transactions (e.g. MySQL, Oracle) then all operations will run without a transaction.

You can prevent a migration from running in a transaction by setting the atomic attribute to False. For example:

from django.db import migrations

class Migration(migrations.Migration):
    atomic = False

It’s also possible to execute parts of the migration inside a transaction using atomic() or by passing atomic=True to RunPython. See 비원자성 마이그레이션입니다. for more details.

의존성

While migrations are per-app, the tables and relationships implied by your models are too complex to be created for one app at a time. When you make a migration that requires something else to run - for example, you add a ForeignKey in your books app to your authors app - the resulting migration will contain a dependency on a migration in authors.

This means that when you run the migrations, the authors migration runs first and creates the table the ForeignKey references, and then the migration that makes the ForeignKey column runs afterwards and creates the constraint. If this didn’t happen, the migration would try to create the ForeignKey column without the table it’s referencing existing and your database would throw an error.

This dependency behavior affects most migration operations where you restrict to a single app. Restricting to a single app (either in makemigrations or migrate) is a best-efforts promise, and not a guarantee; any other apps that need to be used to get dependencies correct will be.

Apps without migrations must not have relations (ForeignKey, ManyToManyField, etc.) to apps with migrations. Sometimes it may work, but it’s not supported.

Migration files

Migrations are stored as an on-disk format, referred to here as 《migration files》. These files are actually normal Python files with an agreed-upon object layout, written in a declarative style.

A basic migration file looks like this:

from django.db import migrations, models

class Migration(migrations.Migration):

    dependencies = [('migrations', '0001_initial')]

    operations = [
        migrations.DeleteModel('Tribble'),
        migrations.AddField('Author', 'rating', models.IntegerField(default=0)),
    ]

What Django looks for when it loads a migration file (as a Python module) is a subclass of django.db.migrations.Migration called Migration. It then inspects this object for four attributes, only two of which are used most of the time:

  • dependencies, a list of migrations this one depends on.
  • operations, a list of Operation classes that define what this migration does.

The operations are the key; they are a set of declarative instructions which tell Django what schema changes need to be made. Django scans them and builds an in-memory representation of all of the schema changes to all apps, and uses this to generate the SQL which makes the schema changes.

That in-memory structure is also used to work out what the differences are between your models and the current state of your migrations; Django runs through all the changes, in order, on an in-memory set of models to come up with the state of your models last time you ran makemigrations. It then uses these models to compare against the ones in your models.py files to work out what you have changed.

You should rarely, if ever, need to edit migration files by hand, but it’s entirely possible to write them manually if you need to. Some of the more complex operations are not autodetectable and are only available via a hand-written migration, so don’t be scared about editing them if you have to.

Custom fields

You can’t modify the number of positional arguments in an already migrated custom field without raising a TypeError. The old migration will call the modified __init__ method with the old signature. So if you need a new argument, please create a keyword argument and add something like assert 'argument_name' in kwargs in the constructor.

Model managers

You can optionally serialize managers into migrations and have them available in RunPython operations. This is done by defining a use_in_migrations attribute on the manager class:

class MyManager(models.Manager):
    use_in_migrations = True

class MyModel(models.Model):
    objects = MyManager()

If you are using the from_queryset() function to dynamically generate a manager class, you need to inherit from the generated class to make it importable:

class MyManager(MyBaseManager.from_queryset(CustomQuerySet)):
    use_in_migrations = True

class MyModel(models.Model):
    objects = MyManager()

Please refer to the notes about Historical models in migrations to see the implications that come along.

Initial migrations

Migration.initial

The 《initial migrations》 for an app are the migrations that create the first version of that app’s tables. Usually an app will have one initial migration, but in some cases of complex model interdependencies it may have two or more.

Initial migrations are marked with an initial = True class attribute on the migration class. If an initial class attribute isn’t found, a migration will be considered 《initial》 if it is the first migration in the app (i.e. if it has no dependencies on any other migration in the same app).

When the migrate --fake-initial option is used, these initial migrations are treated specially. For an initial migration that creates one or more tables (CreateModel operation), Django checks that all of those tables already exist in the database and fake-applies the migration if so. Similarly, for an initial migration that adds one or more fields (AddField operation), Django checks that all of the respective columns already exist in the database and fake-applies the migration if so. Without --fake-initial, initial migrations are treated no differently from any other migration.

History consistency

As previously discussed, you may need to linearize migrations manually when two development branches are joined. While editing migration dependencies, you can inadvertently create an inconsistent history state where a migration has been applied but some of its dependencies haven’t. This is a strong indication that the dependencies are incorrect, so Django will refuse to run migrations or make new migrations until it’s fixed. When using multiple databases, you can use the allow_migrate() method of database routers to control which databases makemigrations checks for consistent history.

Adding migrations to apps

New apps come preconfigured to accept migrations, and so you can add migrations by running makemigrations once you’ve made some changes.

If your app already has models and database tables, and doesn’t have migrations yet (for example, you created it against a previous Django version), you’ll need to convert it to use migrations by running:

$ python manage.py makemigrations your_app_label

This will make a new initial migration for your app. Now, run python manage.py migrate --fake-initial, and Django will detect that you have an initial migration and that the tables it wants to create already exist, and will mark the migration as already applied. (Without the migrate --fake-initial flag, the command would error out because the tables it wants to create already exist.)

Note that this only works given two things:

  • You have not changed your models since you made their tables. For migrations to work, you must make the initial migration first and then make changes, as Django compares changes against migration files, not the database.
  • You have not manually edited your database - Django won’t be able to detect that your database doesn’t match your models, you’ll just get errors when migrations try to modify those tables.

Reversing migrations

Migrations can be reversed with migrate by passing the number of the previous migration. For example, to reverse migration books.0003:

$ python manage.py migrate books 0002
Operations to perform:
  Target specific migration: 0002_auto, from books
Running migrations:
  Rendering model states... DONE
  Unapplying books.0003_auto... OK
...\> py manage.py migrate books 0002
Operations to perform:
  Target specific migration: 0002_auto, from books
Running migrations:
  Rendering model states... DONE
  Unapplying books.0003_auto... OK

If you want to reverse all migrations applied for an app, use the name zero:

$ python manage.py migrate books zero
Operations to perform:
  Unapply all migrations: books
Running migrations:
  Rendering model states... DONE
  Unapplying books.0002_auto... OK
  Unapplying books.0001_initial... OK
...\> py manage.py migrate books zero
Operations to perform:
  Unapply all migrations: books
Running migrations:
  Rendering model states... DONE
  Unapplying books.0002_auto... OK
  Unapplying books.0001_initial... OK

A migration is irreversible if it contains any irreversible operations. Attempting to reverse such migrations will raise IrreversibleError:

$ python manage.py migrate books 0002
Operations to perform:
  Target specific migration: 0002_auto, from books
Running migrations:
  Rendering model states... DONE
  Unapplying books.0003_auto...Traceback (most recent call last):
django.db.migrations.exceptions.IrreversibleError: Operation <RunSQL  sql='DROP TABLE demo_books'> in books.0003_auto is not reversible
...\> py manage.py migrate books 0002
Operations to perform:
  Target specific migration: 0002_auto, from books
Running migrations:
  Rendering model states... DONE
  Unapplying books.0003_auto...Traceback (most recent call last):
django.db.migrations.exceptions.IrreversibleError: Operation <RunSQL  sql='DROP TABLE demo_books'> in books.0003_auto is not reversible

Historical models

When you run migrations, Django is working from historical versions of your models stored in the migration files. If you write Python code using the RunPython operation, or if you have allow_migrate methods on your database routers, you need to use these historical model versions rather than importing them directly.

경고

If you import models directly rather than using the historical models, your migrations may work initially but will fail in the future when you try to re-run old migrations (commonly, when you set up a new installation and run through all the migrations to set up the database).

This means that historical model problems may not be immediately obvious. If you run into this kind of failure, it’s OK to edit the migration to use the historical models rather than direct imports and commit those changes.

Because it’s impossible to serialize arbitrary Python code, these historical models will not have any custom methods that you have defined. They will, however, have the same fields, relationships, managers (limited to those with use_in_migrations = True) and Meta options (also versioned, so they may be different from your current ones).

경고

This means that you will NOT have custom save() methods called on objects when you access them in migrations, and you will NOT have any custom constructors or instance methods. Plan appropriately!

References to functions in field options such as upload_to and limit_choices_to and model manager declarations with managers having use_in_migrations = True are serialized in migrations, so the functions and classes will need to be kept around for as long as there is a migration referencing them. Any custom model fields will also need to be kept, since these are imported directly by migrations.

In addition, the concrete base classes of the model are stored as pointers, so you must always keep base classes around for as long as there is a migration that contains a reference to them. On the plus side, methods and managers from these base classes inherit normally, so if you absolutely need access to these you can opt to move them into a superclass.

To remove old references, you can squash migrations or, if there aren’t many references, copy them into the migration files.

Considerations when removing model fields

Similar to the 《references to historical functions》 considerations described in the previous section, removing custom model fields from your project or third-party app will cause a problem if they are referenced in old migrations.

To help with this situation, Django provides some model field attributes to assist with model field deprecation using the system checks framework.

Add the system_check_deprecated_details attribute to your model field similar to the following:

class IPAddressField(Field):
    system_check_deprecated_details = {
        'msg': (
            'IPAddressField has been deprecated. Support for it (except '
            'in historical migrations) will be removed in Django 1.9.'
        ),
        'hint': 'Use GenericIPAddressField instead.',  # optional
        'id': 'fields.W900',  # pick a unique ID for your field.
    }

After a deprecation period of your choosing (two or three feature releases for fields in Django itself), change the system_check_deprecated_details attribute to system_check_removed_details and update the dictionary similar to:

class IPAddressField(Field):
    system_check_removed_details = {
        'msg': (
            'IPAddressField has been removed except for support in '
            'historical migrations.'
        ),
        'hint': 'Use GenericIPAddressField instead.',
        'id': 'fields.E900',  # pick a unique ID for your field.
    }

You should keep the field’s methods that are required for it to operate in database migrations such as __init__(), deconstruct(), and get_internal_type(). Keep this stub field for as long as any migrations which reference the field exist. For example, after squashing migrations and removing the old ones, you should be able to remove the field completely.

Data Migrations

As well as changing the database schema, you can also use migrations to change the data in the database itself, in conjunction with the schema if you want.

Migrations that alter data are usually called 《data migrations》; they’re best written as separate migrations, sitting alongside your schema migrations.

Django can’t automatically generate data migrations for you, as it does with schema migrations, but it’s not very hard to write them. Migration files in Django are made up of Operations, and the main operation you use for data migrations is RunPython.

To start, make an empty migration file you can work from (Django will put the file in the right place, suggest a name, and add dependencies for you):

python manage.py makemigrations --empty yourappname

Then, open up the file; it should look something like this:

# Generated by Django A.B on YYYY-MM-DD HH:MM
from django.db import migrations

class Migration(migrations.Migration):

    dependencies = [
        ('yourappname', '0001_initial'),
    ]

    operations = [
    ]

Now, all you need to do is create a new function and have RunPython use it. RunPython expects a callable as its argument which takes two arguments - the first is an app registry that has the historical versions of all your models loaded into it to match where in your history the migration sits, and the second is a SchemaEditor, which you can use to manually effect database schema changes (but beware, doing this can confuse the migration autodetector!)

Let’s write a migration that populates our new name field with the combined values of first_name and last_name (we’ve come to our senses and realized that not everyone has first and last names). All we need to do is use the historical model and iterate over the rows:

from django.db import migrations

def combine_names(apps, schema_editor):
    # We can't import the Person model directly as it may be a newer
    # version than this migration expects. We use the historical version.
    Person = apps.get_model('yourappname', 'Person')
    for person in Person.objects.all():
        person.name = '%s %s' % (person.first_name, person.last_name)
        person.save()

class Migration(migrations.Migration):

    dependencies = [
        ('yourappname', '0001_initial'),
    ]

    operations = [
        migrations.RunPython(combine_names),
    ]

Once that’s done, we can run python manage.py migrate as normal and the data migration will run in place alongside other migrations.

You can pass a second callable to RunPython to run whatever logic you want executed when migrating backwards. If this callable is omitted, migrating backwards will raise an exception.

Accessing models from other apps

When writing a RunPython function that uses models from apps other than the one in which the migration is located, the migration’s dependencies attribute should include the latest migration of each app that is involved, otherwise you may get an error similar to: LookupError: No installed app with label 'myappname' when you try to retrieve the model in the RunPython function using apps.get_model().

In the following example, we have a migration in app1 which needs to use models in app2. We aren’t concerned with the details of move_m1 other than the fact it will need to access models from both apps. Therefore we’ve added a dependency that specifies the last migration of app2:

class Migration(migrations.Migration):

    dependencies = [
        ('app1', '0001_initial'),
        # added dependency to enable using models from app2 in move_m1
        ('app2', '0004_foobar'),
    ]

    operations = [
        migrations.RunPython(move_m1),
    ]

More advanced migrations

If you’re interested in the more advanced migration operations, or want to be able to write your own, see the migration operations reference and the 《how-to》 on writing migrations.

Squashing migrations

You are encouraged to make migrations freely and not worry about how many you have; the migration code is optimized to deal with hundreds at a time without much slowdown. However, eventually you will want to move back from having several hundred migrations to just a few, and that’s where squashing comes in.

Squashing is the act of reducing an existing set of many migrations down to one (or sometimes a few) migrations which still represent the same changes.

Django does this by taking all of your existing migrations, extracting their Operations and putting them all in sequence, and then running an optimizer over them to try and reduce the length of the list - for example, it knows that CreateModel and DeleteModel cancel each other out, and it knows that AddField can be rolled into CreateModel.

Once the operation sequence has been reduced as much as possible - the amount possible depends on how closely intertwined your models are and if you have any RunSQL or RunPython operations (which can’t be optimized through unless they are marked as elidable) - Django will then write it back out into a new set of migration files.

These files are marked to say they replace the previously-squashed migrations, so they can coexist with the old migration files, and Django will intelligently switch between them depending where you are in the history. If you’re still part-way through the set of migrations that you squashed, it will keep using them until it hits the end and then switch to the squashed history, while new installs will use the new squashed migration and skip all the old ones.

This enables you to squash and not mess up systems currently in production that aren’t fully up-to-date yet. The recommended process is to squash, keeping the old files, commit and release, wait until all systems are upgraded with the new release (or if you’re a third-party project, ensure your users upgrade releases in order without skipping any), and then remove the old files, commit and do a second release.

The command that backs all this is squashmigrations - pass it the app label and migration name you want to squash up to, and it’ll get to work:

$ ./manage.py squashmigrations myapp 0004
Will squash the following migrations:
 - 0001_initial
 - 0002_some_change
 - 0003_another_change
 - 0004_undo_something
Do you wish to proceed? [yN] y
Optimizing...
  Optimized from 12 operations to 7 operations.
Created new squashed migration /home/andrew/Programs/DjangoTest/test/migrations/0001_squashed_0004_undo_somthing.py
  You should commit this migration but leave the old ones in place;
  the new migration will be used for new installs. Once you are sure
  all instances of the codebase have applied the migrations you squashed,
  you can delete them.

Use the squashmigrations --squashed-name option if you want to set the name of the squashed migration rather than use an autogenerated one.

Note that model interdependencies in Django can get very complex, and squashing may result in migrations that do not run; either mis-optimized (in which case you can try again with --no-optimize, though you should also report an issue), or with a CircularDependencyError, in which case you can manually resolve it.

To manually resolve a CircularDependencyError, break out one of the ForeignKeys in the circular dependency loop into a separate migration, and move the dependency on the other app with it. If you’re unsure, see how makemigrations deals with the problem when asked to create brand new migrations from your models. In a future release of Django, squashmigrations will be updated to attempt to resolve these errors itself.

Once you’ve squashed your migration, you should then commit it alongside the migrations it replaces and distribute this change to all running instances of your application, making sure that they run migrate to store the change in their database.

You must then transition the squashed migration to a normal migration by:

  • Deleting all the migration files it replaces.
  • Updating all migrations that depend on the deleted migrations to depend on the squashed migration instead.
  • Removing the replaces attribute in the Migration class of the squashed migration (this is how Django tells that it is a squashed migration).

주석

Once you’ve squashed a migration, you should not then re-squash that squashed migration until you have fully transitioned it to a normal migration.

Serializing values

Migrations are Python files containing the old definitions of your models - thus, to write them, Django must take the current state of your models and serialize them out into a file.

While Django can serialize most things, there are some things that we just can’t serialize out into a valid Python representation - there’s no Python standard for how a value can be turned back into code (repr() only works for basic values, and doesn’t specify import paths).

Django can serialize the following:

  • int, float, bool, str, bytes, None, NoneType
  • list, set, tuple, dict, range.
  • datetime.date, datetime.time, and datetime.datetime instances (include those that are timezone-aware)
  • decimal.Decimal instances
  • enum.Enum instances
  • uuid.UUID instances
  • functools.partial() and functools.partialmethod instances which have serializable func, args, and keywords values.
  • Pure and concrete path objects from pathlib. Concrete paths are converted to their pure path equivalent, e.g. pathlib.PosixPath to pathlib.PurePosixPath.
  • os.PathLike instances, e.g. os.DirEntry, which are converted to str or bytes using os.fspath().
  • LazyObject instances which wrap a serializable value.
  • Enumeration types (e.g. TextChoices or IntegerChoices) instances.
  • Any Django field
  • Any function or method reference (e.g. datetime.datetime.today) (must be in module’s top-level scope)
  • Unbound methods used from within the class body
  • Any class reference (must be in module’s top-level scope)
  • Anything with a custom deconstruct() method (see below)
Changed in Django 3.2:

Serialization support for pure and concrete path objects from pathlib, and os.PathLike instances was added.

Django cannot serialize:

  • Nested classes
  • Arbitrary class instances (e.g. MyClass(4.3, 5.7))
  • Lambdas

Custom serializers

You can serialize other types by writing a custom serializer. For example, if Django didn’t serialize Decimal by default, you could do this:

from decimal import Decimal

from django.db.migrations.serializer import BaseSerializer
from django.db.migrations.writer import MigrationWriter

class DecimalSerializer(BaseSerializer):
    def serialize(self):
        return repr(self.value), {'from decimal import Decimal'}

MigrationWriter.register_serializer(Decimal, DecimalSerializer)

The first argument of MigrationWriter.register_serializer() is a type or iterable of types that should use the serializer.

The serialize() method of your serializer must return a string of how the value should appear in migrations and a set of any imports that are needed in the migration.

Adding a deconstruct() method

You can let Django serialize your own custom class instances by giving the class a deconstruct() method. It takes no arguments, and should return a tuple of three things (path, args, kwargs):

  • path should be the Python path to the class, with the class name included as the last part (for example, myapp.custom_things.MyClass). If your class is not available at the top level of a module it is not serializable.
  • args should be a list of positional arguments to pass to your class〉 __init__ method. Everything in this list should itself be serializable.
  • kwargs should be a dict of keyword arguments to pass to your class〉 __init__ method. Every value should itself be serializable.

주석

This return value is different from the deconstruct() method for custom fields which returns a tuple of four items.

Django will write out the value as an instantiation of your class with the given arguments, similar to the way it writes out references to Django fields.

To prevent a new migration from being created each time makemigrations is run, you should also add a __eq__() method to the decorated class. This function will be called by Django’s migration framework to detect changes between states.

As long as all of the arguments to your class〉 constructor are themselves serializable, you can use the @deconstructible class decorator from django.utils.deconstruct to add the deconstruct() method:

from django.utils.deconstruct import deconstructible

@deconstructible
class MyCustomClass:

    def __init__(self, foo=1):
        self.foo = foo
        ...

    def __eq__(self, other):
        return self.foo == other.foo

The decorator adds logic to capture and preserve the arguments on their way into your constructor, and then returns those arguments exactly when deconstruct() is called.

Supporting multiple Django versions

If you are the maintainer of a third-party app with models, you may need to ship migrations that support multiple Django versions. In this case, you should always run makemigrations with the lowest Django version you wish to support.

The migrations system will maintain backwards-compatibility according to the same policy as the rest of Django, so migration files generated on Django X.Y should run unchanged on Django X.Y+1. The migrations system does not promise forwards-compatibility, however. New features may be added, and migration files generated with newer versions of Django may not work on older versions.

더 보기

The Migrations Operations Reference
Covers the schema operations API, special operations, and writing your own operations.
The Writing Migrations 《how-to》
Explains how to structure and write database migrations for different scenarios you might encounter.